CitationDataset_titlePersistent_IDDatabaseproject NIRAContact personURL
LaPierre MP, Godbersen S, Torres Esteban M, Schad AN, Treier M, Ghoshdastider U, Stoffel M. MicroRNA-7a2 regulates prolactin in developing lactotrophs and prolactinoma cells. Endocrinology, bqaa220 (2021)MicroRNA-7a2 regulates prolactin in developing lactotrophs and prolactinoma cellsPRJEB39159European Nucleotide Archive1.1Stoffel, Markuswww.ebi.ac.uk/ena/browser/view/PRJEB39159
Stuttfeld E, Aylett CH, Imseng S, Boehringer C, Scaiola A, Sauer E, Hall MN*, Maier T*,  Ban N*. Architecture of human mTORC2 core complex. Elife 7:e33101 (2018)Architecture of the human mTORC2 core complex (C2)EMD-3927EMDataResource1.3; 3.4Ban, Nenadwww.emdataresource.org/EMD-3927
Liko D, Rzepiela A, Vukojevic V, Zavolan M, Hall MN. Loss of TSC complex enhances gluconeogenesis via upregulation of Dlk1-Dio3 locus miRNAs. Proc Natl Acad Sci USA 117, 1524-1532 (2020)Loss of TSC complex enhances gluconeogenesis via upregulation of Dlk1-Dio3 locus miRNAsGSE141361NCBI Gene Expression Omnibus1.3; 2.3Rzepiela Awww.ncbi.nlm.nih.gov/geo/query/acc.cgi
Scaiola A, Mangia F, Imseng S, Boehringer D, Berneiser K, Shimobayashi M, Stuttfeld E, Hall MN, Ban N, Maier T. The 3.2Å resolution structure of human mTORC2. Sci Adv, 6:eabc1251 (2020)cryo-EM structure of human mTOR complex 2 focused on one halfEMD-11492EMDataResource1.3; 3.4Ban, Nenadhttps://www.emdataresource.org/EMD-11492
cryo-EM structure of human mTOR complex 2 overall refinementEMD-11488EMDataResource1.3; 3.4Ban, Nenadwww.emdataresource.org/EMD-11488
cryo-EM structure of human mTOR complex 2, focused on one half6ZWOProtein Data Bank1.3; 3.4Ban, Nenadhttps://www.rcsb.org/structure/6ZWO
cryo-EM structure of human mTOR complex 2, overall refinement6ZWMProtein Data Bank1.3; 3.4Ban, Nenadwww.rcsb.org/structure/6ZWM
cryo-EM structure of human mTOR complex 2 in absence of ATP-gamma-SEMD-11489EMDataResource1.3; 3.4Ban, Nenadwww.emdataresource.org/EMD-11489
Human mTOR complex 2 with additional density close to the mLST8EMD-11491EMDataResource1.3; 3.4Ban, Nenadwww.emdataresource.org/EMD-11491
Human mTOR complex 2 with additional density close to the mLST8EMD-11490EMDataResource1.3; 3.4Ban, Nenadwww.emdataresource.org/EMD-11490
Nikolaou KC, Meyer C, Schmid MW, Tuschl T, Stoffel M. The RNA-Binding Protein A1CF Regulates Hepatic Fructose and Glycerol Metabolism via Alternative RNA Splicing. Cell Rep, 29:283–300 (2019)Differential splicing analysis of liver-specific A1cf knock-out mice - BioProjectPRJNA530736NCBI Sequence Read Archive1.4Stoffel, Markuswww.ncbi.nlm.nih.gov/sra/
PAR-CLIP of A1cf in mouse liver - BioProjectPRJNA531626 NCBI Sequence Read Archive1.4Stoffel, Markuswww.ncbi.nlm.nih.gov/sra/
Kobiita A, Godbersen S,Araldi E, Ghoshdastider U, Schmid MW, Spinas G, Moch H, Stoffel M. The diabetes gene JAZF1 is essential for the homeostatic control of ribosome biogenesis and function in metabolic stress. Cell Rep, 32:107846 (2020)RNA-seq of isolated pancreatic islets from beta-cell-specific Jazf1 knock-out mice - BioProjectPRJNA595139NCBI Sequence Read Archive1.4Stoffel, Markuswww.ncbi.nlm.nih.gov/sra/
ChIP-seq data setPRJNA595471NCBI Sequence Read Archive1.4Stoffel, Markuswww.ncbi.nlm.nih.gov/bioproject/
Singh A, Vancura A, Woycicki RK, Hogan DJ, Hendrick AG, Nowacki M. Determination of the presence of 5-methylcytosine in Paramecium tetraurelia.PLoS One. 13:e0206667 (2018)DNA 5-methylcytosine in ParameciumGSE111621NCBI Gene Expression Omnibus1.5Hogan, Danielwww.ncbi.nlm.nih.gov/geo/query/acc.cgi
Glousker G, Briod A-S, Quadroni M, Lingner J. Human shelterin protein POT1 Prevents Severe telomere instability induced by homology directed DNA repair. EMBO J, 39:e104500 (2020)Human POT1 Prevents Severe Telomere Damage Instability Induced by Homology Directed DNA RepairPXD016826ProteomXchange data repository1.6, 1.7Quadroni, Manfredoproteomecentral.proteomexchange.org/cgi/GetDataset
Majerska J, Feretzaki M, Glousker G, Lingner J. Transformation-induced stress at telomeres is counteracted through changes in the telomeric proteome including SAMHD1. Life Sci Alliance, 1:e201800121, (2018)Transformation-induced stress at telomeres is counteracted through changes in the telomeric proteome including SAMHD1PXD010088ProteomXchange data repository1.6, 1.7Lingner, Joachimproteomecentral.proteomexchange.org/cgi/GetDataset
Bracher L, Ferro I, Pulido-Quetglas C, Ruepp MD, Johnson R, Polacek N. Human vtRNA1-1 levels modulate signaling pathways and regulate apoptosis in human cancer cells. Biomolecules, 10:E614 (2020)mSeq of vtRNA1.1 and vtRNA1.3 knockout or control cells in standard and starvation conditionGSE147054NCBI Gene Expression Omnibus1.9Polacek, Norbertwww.ncbi.nlm.nih.gov/geo/query/acc.cgi
Welte T, Tuck A, Papasaikas P, Carl S, Flemr M, Knuckles P, Rankova A, Bühler M, Grosshans H. The RNA hairpin binder TRIM71 modulates alternative splicing by repressing MBNL1. Genes Dev, 33:1221-1235 (2019)The RNA hairpin binder TRIM71 modulates alternative splicing by repressing MBNL1GSE134125NCBI Gene Expression Omnibus1.10; 2.11Papasaikas, Panagiotiswww.ncbi.nlm.nih.gov/geo/query/acc.cgi
Tuck AC, Rankova A, Arpat AB, Liechti LA, Hess D, Iesmantavicius V, Castelo-Szekely V, Gatfield D, Bühler M. Mammalian RNA decay pathways are highly specialized and widely linked to translation. Mol Cell, 77:1222-1236.e13 (2020)Mammalian RNA decay pathways are highly specialized and widely linked to translationGSE134020NCBI Gene Expression Omnibus1.10; 3.8Tuck, Alexwww.ncbi.nlm.nih.gov/geo/query/acc.cgi
Knuckles P, Lence T, Haussmann IU, Jacob D, Kreim N, Carl SH, Masiello I, Hares T, Villaseñor R, Hess D, Andrade-Navarro MA, Biggiogera M, Helm M, Soller M, Bühler M, Roignant JY. Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m6A machinery component Wtap/Fl(2)d. Genes Dev, 32:415-429 (2018)Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA binding factor Rbm15/Spenito to other components of the m6A machineryGSE106614NCBI Gene Expression Omnibus1.10Roignant, Jean-Yveswww.ncbi.nlm.nih.gov/geo/query/acc.cgi
Tuck AC, Natarajan KN, Rice GM, Borawski J, Mohn F, Rankova A, Flemr M, Wenger A, Nutiu R, Teichmann S, Bühler M. Distinctive features of lincRNA gene expression suggest widespread RNA-independent functions. Life Sci Alliance, 1:e201800124 (2018)Deconstructing lincRNA regulation during ESC to NPC differentiationGSE107493NCBI Gene Expression Omnibus1.10Tuck, Alexwww.ncbi.nlm.nih.gov/geo/query/acc.cgi
Biasini A, de Pretis S, Tan JY, Abdulkarim B, Wischnewski H, Dreos R, Pelizzola M, Ciaudo C, Marques AC. Translation is required to miRNA-dependent decay of endogenous transcripts. EMBO J, e104569 (2020)Translation is required for miRNA-dependent decay of endogenous transcripts.GSE143277NCBI Gene Expression Omnibus1.11; 2.12; Bioinfo_LSMarques, Anawww.ncbi.nlm.nih.gov/geo/query/acc.cgi
Dalcher D, Tan JY, Bersaglieri C, Peña-Hernández R, Vollenweider E, Zeyen S, Schmid MW, Bianchi V, Butz S, Roganowicz M, Kuzyakiv R, Baubec T, Marques AC, Santoro R. BAZ2A safeguards genome architecture of ground-state pluripotent stem cells. EMBO J, 39:e105606 (2020) BAZ2A safeguards genome architecture of ground-state pluripotent stem cellsGSE112222NCBI Gene Expression Omnibus1.11; 1.13Santoro, Raffaellawww.ncbi.nlm.nih.gov/geo/query/acc.cgi
Tan JY, Biasini A, Young RS, Marques AC. Splicing of enhancer-associated lincRNAs contributes to enhancer activity. Life Sci Alliance, 3:e202000663 (2020)4sU metabolic labeled transcripts in mESCsGSE111951NCBI Gene Expression Omnibus1.11Yihong Tan, Jenniferwww.ncbi.nlm.nih.gov/geo/query/acc.cgi
Ruiz Buendia GA, Leleu M, Marzetta F, Vanzan L, Tan JY, Marques AC, Baubec T, Murr R, Xenarios I, Dion V. Three-dimensional chromatin interactions remain stable upon CAG/CTG repeat expansion. Sci Adv, 6:eaaz4012 (2020)Three-dimensional chromatin interactions remain stable upon CAG/CTG repeat expansionGSE148185NCBI Gene Expression Omnibus1.11Buendía, Gustavo Agustín Ruiz www.ncbi.nlm.nih.gov/geo/query/acc.cgi
Guay C, Abdulkarim B, Tan JY, Dubuis G, Rütti S, Laybutt DR, Widmann C, Regazzi R, Marques AC. Loss-of-function of the long non-coding RNA A830019P07Rik in mice does not affect insulin expression and secretion. Sci Rep, 10:6413 (2020)Loss-of-function of the long non-coding RNA A830019P07Rik in mice does not affect insulin expression and secretionGSE137389NCBI Gene Expression Omnibus1.11Yihong Tan, Jenniferwww.ncbi.nlm.nih.gov/geo/query/acc.cgi
Coe EA, Tan JY, Shapiro M, Louphrasitthiphol P, Bassett AR, Marques AC, Goding CR, Vance KW. The MITF-SOX10 regulated long non-coding RNA DIRC3 is a melanoma tumour suppressor. PLoS Genet, 15:e1008501 (2019)RNA-seq analysis of SKMEL28 melanoma cells following DIRC3 and IGFBP5 ASO knockdownGSE129467NCBI Gene Expression Omnibus1.11Vance, Keith William www.ncbi.nlm.nih.gov/geo/query/acc.cgi
The MITF-SOX10 regulated long non-coding RNA DIRC3 is a melanoma tumour suppressorGSE129078NCBI Gene Expression Omnibus1.11Louphrasitthiphol, Pakavarinwww.ncbi.nlm.nih.gov/geo/query/acc.cgi
Emming S, Bianchi N, Polletti S, Balestrieri C, Leoni C, Montagner S, Chirichella M, Delaleu N, Natoli G, Monticelli S. A molecular network regulating the pro-inflammatory phenotype of human memory T lymphocytes. Nat Immunol. 21:388-399 (2020)A molecular network regulating the proinflammatory phenotype of human memory T lymphocytesGSE122946NCBI Gene Expression Omnibus1.12Balestrieri, Chiarawww.ncbi.nlm.nih.gov/geo/query/acc.cgi
Ngondo P, Cirera-Salinas D, Yu J, Wischnewski H, Bodak M, Vandormael-Pournin S, Geisehmann A, Wettstein R, Luitz J, Cohen-Tannoudji M, Ciaudo C. Argonaute 2 is required for primitive endoderm differentiation of mouse embryonic stem cells. Stem Cell Reports, 10:1-16 (2018)Transcriptome of WT mouse embryonic stem cellsGSE78971NCBI Gene Expression Omnibus2.2Ciaudo, Constancewww.ncbi.nlm.nih.gov/geo/query/acc.cgi
Roles of Argonaute protein in mouse embryonic stem cellsGSE80454NCBI Gene Expression Omnibus2.2Ciaudo, Constancewww.ncbi.nlm.nih.gov/geo/query/acc.cgi
Ghosh S, Guimaraes JC, Lanzafame M, Schmidt A, Syed AP, Dimitriades B, Börsch A, Ghosh S, Mittal N, Montavon T, Correia AL, Danner J, Meister G, Terracciano LM, Pfeffer S, Piscuoglio S, Zavolan M. Prevention of dsRNA-induced interferon signaling by AGO1x is linked to breast cancer cell proliferation. EMBO J, 39:e103922 (2020)AGO1x prevents dsRNA-induced interferon signaling to promote breast cancer cell proliferationPRJNA447929NCBI Bioproject2.3Zavolan, Mihaelawww.ncbi.nlm.nih.gov/bioproject/PRJNA447929
AGO1x stop codon readthrough isoformPXD009401ProteomXchange data repository2.3Schmidt, Alexander proteomecentral.proteomexchange.org/cgi/GetDataset
Guimaraes JC, Mittal N, Gnann A, Jedlinski D, Riba A, Buczak K, Schmidt A, Zavolan M. A rare codon-based translational program of cell proliferation. Genome Biol, 21:44 (2020)A rare-codon-based translational program of cell proliferationPRJNA472989NCBI Bioproject2.3Zavolan, Mihaelawww.ncbi.nlm.nih.gov/bioproject/PRJNA472989
A rare-codon-based translational program of cell proliferationPXD016034ProteomXchange data repository2.3Schmidt, Alexander www.ebi.ac.uk/pride/archive/projects/PXD016034
Pandey RR, Homolka D, Olotu O, Sachidanandam R, Kotaja N, Pillai RS. Exonuclease Domain-Containing 1 Enhances MIWI2 piRNA Biogenesis via Its Interaction with TDRD12. Cell Rep, 24:3423-3432.e4 (2018)Exonuclease domain-containing 1 enhances MIWI2 piRNA biogenesis via its interaction with TDRD12GSE119447NCBI Gene Expression Omnibus2.4Pillai, Rameshwww.ncbi.nlm.nih.gov/geo/query/acc.cgi
Campagne S, Boigner S, Rüdisser S, Moursy A, Gillioz L, Knörlein A, Hall J, Ratni H, Cléry A, Allain FH. Structural basis of a small molecule targeting RNA for a specific splicing correction. Nat Chem Biol, 15:1191-1198 (2019)Solution structure of the RNA duplex formed by the 5'-end of U1snRNA and the 5'-splice site of SMN2 exon734311Biological Magnetic Resonance Data Bank2.6Allain, Frédéricbmrb.io/data_library/summary/
Solution structure of the RNA duplex formed by the 5'-end of U1snRNA and the 5'-splice site of SMN2 exon7 in complex with the SMN-C5 splicing modifier34312Biological Magnetic Resonance Data Bank2.6Allain, Frédéricbmrb.io/data_library/summary/
Solution structure of the RNA duplex formed by the 5'-end of U1snRNA and the 5'-splice site of SMN2 exon76HMIProtein Data Bank2.6Allain, Frédéricwww.rcsb.org/structure/6HMI
Solution structure of the RNA duplex formed by the 5'-end of U1snRNA and the 5'-splice site of SMN2 exon7 in complex with the SMN-C5 splicing modifier6HMOProtein Data Bank2.6Allain, Frédéricwww.rcsb.org/structure/6HMO
Cléry A, Krepl M, Nguyen CKX, Moursy A, Jorjani H, Katsantoni M, Okoniewski M, Mittal N, Zavolan M, Sponer J, Allain F.H. Structure of SRSF1 RRM1 bound to RNA reveals an unexpected bimodal mode of interaction and explains its involvement in SMN1 exon7 splicing. Nat Commun, 12:428 (2021) Structure of human SRSF1 RRM1 bound to AACAAA RNA6HPJProtein Data Bank2.6Allain, Frédéricwww.rcsb.org/structure/6HPJ
Ripin N, Boudet J, Duszczyk MM, Hinniger A, Faller M, Krepl M, Gadi A, Schneider RJ, Šponer J, Meisner-Kober NC, Allain FH. Molecular basis for AU-rich element recognition and dimerization by the HuR C-terminal RRM. Proc Natl Acad Sci U S A, 116, 2935-2944 (2019)Molecular basis for AU-rich element recognition and dimerization by the HuR C-terminal RRM6GC5Protein Data Bank2.6Allain, Frédéricwww.rcsb.org/structure/6GC5
Nikolaev Y, Ripin N, Soste M, Picotti P, Iber D, Allain FH. Systems NMR: single-sample quantification of RNA, proteins and metabolites for biomolecular network analysis. Nat Methods, 16:743-749 (2019)Data for the "Systems NMR: simultaneous quantification of RNA, protein, and metabolite reaction dynamics for biomolecular network analysis."2554066Zenodo2.6Allain, Frédériczenodo.org/record/2554066
SRM used to measure nuclear protein concentrations to confirm measurements by SystemsNMRPASS01365PeptideAtlas2.6Picotti, Paoladb.systemsbiology.net/sbeams/cgi/PeptideAtlas/PASS_View
Denichenko P, Mogilevsky M, Cléry A, Welte T, Biran J, Shimshon O, Barnabas GD, Danan-Gotthold M, Kumar S, Yavin E, Levanon EY, Allain FH, Geiger T, Levkowitz G, Karni R. Specific inhibition of splicing factor activity by decoy RNA oligonucleotides. Nat Commun, 10:1590 (2019)Specific inhibition of splicing factor activity by decoy RNA oligonucleotidesGSE126503NCBI Gene Expression Omnibus2.6Danan-Gotthold, Miriwww.ncbi.nlm.nih.gov/geo/query/acc.cgi
Specific inhibition of splicing factor activity by decoy RNA oligonucleotidesPXD012564ProteomXchange data repository2.6Geiger, Tamarproteomecentral.proteomexchange.org/cgi/GetDataset
Masliah G, Maris C, König SL, Yulikov M, Aeschimann F, Malinowska AL, Mabille J, Weiler J, Holla A, Hunziker J, Meisner-Kober N, Schuler B, Jeschke G, Allain FH. Structural basis of siRNA recognition by TRBP double-stranded RNA binding domains. EMBO J, 37:e97089 (2018)Structure of TRBP dsRBD 1 and 2 in complex with a 19 bp siRNA (Complex A)5N8MProtein Data Bank2.6Allain, Frédéricwww.rcsb.org/structure/5N8M
Structure of TRBP dsRBD 1 and 2 in complex with a 19 bp siRNA (Complex B)5N8LProtein Data Bank2.6Allain, Frédéricwww.rcsb.org/structure/5N8L
Loughlin FE, Lukavsky PJ, Kazeeva T, Reber S, Hock EM, Colombo M, Von Schroetter C, Pauli P, Cléry A, Mühlemann O, Polymenidou M, Ruepp MD, Allain FH. The Solution Structure of FUS Bound to RNA Reveals a Bipartite Mode of RNA Recognition with Both Sequence and Shape Specificity. Mol Cell, 73:490-504.e6 (2019)SOLUTION STRUCTURE OF FUS-ZNF BOUND TO UGGUG6G99Proteopedia2.7; 2.8Allain, Frédéricproteopedia.org/wiki/fgij/fg.htm
SOLUTION STRUCTURE OF FUS-RRM BOUND TO STEM-LOOP RNA6GBMProteopedia2.7; 2.8Allain, Frédéricproteopedia.org/wiki/fgij/fg.htm
Solution structure of FUS-ZnF bound to UGGUG34258Biological Magnetic Resonance Data Bank2.7; 2.8Allain, Frédéricbmrb.io/data_library/summary/index.php
Solution structure of FUS-RRM bound to stem-loop RNA34259Biological Magnetic Resonance Data Bank2.7; 2.8Allain, Frédéricbmrb.io/data_library/summary/index.php
Jutzi D, Campagne S, Schmidt R, Reber S, Mechtersheimer J, Gypas F, Schweingruber C, Colombo M, von Schroetter C, Loughlin FE, Devoy A, Hedlund E, Zavolan M, Allain FH, Ruepp MD. Aberrant interaction of FUS with the U1 snRNA provides a molecular mechanism of FUS induced amyotrophic lateral sclerosis. Nat Commun, 11:6341 (2020)Solution structure of the FUS/TLS RNA recognition motif in complex with U1 snRNA stem loop III6SNJProtein Data Bank2.7Allain, Frédéricwww.wwpdb.org/pdb
Solution structure of the FUS/TLS RNA recognition motif in complex with U1 snRNA stem loop III34427BMRB2.7Allain, Frédéricbmrb.io/data_library/summary/
Transcriptome-wide identification of nuclear and cytoplasmic RNA-binding sites of FUS RBD-only constructsGSE139263NCBI Gene Expression Omnibus2.7Ruepp, Marc-Davidwww.ncbi.nlm.nih.gov/geo/query/acc.cgi
Schütz S, Michel E, Damberger FF, Oplová M, Peña C, Leitner A, Aebersold R, Allain FH, Panse VG. Molecular basis for disassembly of an importin:ribosomal protein complex by the escortin Tsr2. Nat Commun, 9:3669 (2018)NMR Solution Structure of yeast TSR2(1-152)6G03Protein Data Bank2.7; Struc MassSpecPanse, Vikramwww.rcsb.org/structure/6G03
NMR Solution Structure of Yeast TSR2(1-152) in Complex with S26A(100-119)6G04Protein Data Bank2.7; Struc MassSpecPanse, Vikramwww.rcsb.org/structure/6G04
Molecular basis for RanGTP independent disassembly of an importin:ribosomal protein complex by the escortin Tsr2PXD009106ProteomXchange data repository2.7; Struc MassSpecLeitner, Alexanderproteomecentral.proteomexchange.org/cgi/GetDataset
Sabath K, Stäubli ML, Leitner A, Moes M, Jonas S. INTS10–INTS13–INTS14 form a functional module of Integrator that binds nucleic acids and the cleavage module. Nat Commun, 11:3422 (2020)Crystal structure of the human INTS13-INTS14 complex6SN1Protein Data Bank2.9; Struc MassSpecJonas, Stefaniewww.wwpdb.org/pdb
Characterization of Integrator module INTS10-INTS13-INTS14 and its connection to the cleavage module Part IPXD015682ProteomXchange data repository2.9; Struc MassSpecLeitner, Alexanderproteomecentral.proteomexchange.org/cgi/GetDataset
Characterization of Integrator module INTS10-INTS13-INTS14 and its connection to the cleavage module Part IIPXD017996ProteomXchange data repository2.9; Struc MassSpecLeitner, Alexanderproteomecentral.proteomexchange.org/cgi/GetDataset
Studer MK, Ivanovi? L, Weber ME, Marti S, Jonas S. Structural basis for DEAH-helicase activation by G-patch proteins. Proc Natl Acad Sci USA, 117:7159–7170 (2020)Crystal structure of the human DEAH-helicase DHX15 in complex with the NKRF G-patch6SH7Protein Data Bank2.9Jonas, Stefaniewww.wwpdb.org/pdb
Crystal structure of the human DEAH-helicase DHX15 in complex with the NKRF G-patch bound to ADP6SH6Protein Data Bank2.9Jonas, Stefaniewww.wwpdb.org/pdb
Pandey RR, Delfino E, Homolka D, Roithova A, Chen KM, Li L, Franco G, Broberg Vågbø C, Taillebourg E, Fauvarque MO, Pillai RS. The Mammalian Cap-Specific m6Am RNA Methyltransferase PCIF1 Regulates Transcript Levels in Mouse Tissues. Cell Rep, 32:108038 (2020)The mammalian cap-specific m6Am RNA methyltransferase PCIF1 regulates transcript levels in mouse tissueGSE151229NCBI Gene Expression Omnibus2.10Pillai, Rameshwww.ncbi.nlm.nih.gov/geo/query/acc.cgi
Mendel M, Chen KM, Homolka D, Gos P, Pandey RR, McCarthy AA, Pillai RS. Methylation of Structured RNA by the m6A Writer METTL16 Is Essential for Mouse Embryonic Development. Mol Cell, 71:986-1000.e11 (2018)Methylation of structured RNA by the m6A writer METTL16 is essential for mouse embryonic developmentGSE116329NCBI Gene Expression Omnibus2.10Pillai, Rameshwww.ncbi.nlm.nih.gov/geo/query/acc.cgi
METTL16 MTase domain6GFNProtein Data Bank2.10Pillai, Rameshwww.rcsb.org/structure/6GFN
METTL16 MTase domain (crystal form 2)6GT5Protein Data Bank2.10Pillai, Rameshwww.rcsb.org/structure/6GT5
delta-N METTL16 MTase domain6GFKProtein Data Bank2.10Pillai, Rameshwww.rcsb.org/structure/6GFK
Schubert K, Karousis ED, Jomaa A, Scaiola A, Echeverria B, Gurzeler LA, Leibundgut M, Thiel V, Mühlemann O, Ban N. SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation. Nat Struct Mol Biol, 27:959-966 (2020)SARS-CoV-2-Nsp1-40S complex, composite mapEMD-11320Electron Microscopy Data Bank (EMDB)2.12; 3.6Ban, Nenadwww.ebi.ac.uk/pdbe/entry/emdb/EMD-11320
SARS-CoV-2-Nsp1-40S complex, composite map6ZOJProtein Data Bank2.12; 3.6Ban, Nenadwww.wwpdb.org/pdb
SARS-CoV-2-Nsp1-40S complex, focused on bodyEMD-11321Electron Microscopy Data Bank (EMDB)2.12; 3.6Ban, Nenadwww.ebi.ac.uk/pdbe/entry/emdb/EMD-11321
SARS-CoV-2-Nsp1-40S complex, focused on body6ZOKProtein Data Bank2.12; 3.6Ban, Nenadwww.wwpdb.org/pdb
SARS-CoV-2-Nsp1-40S complex, focused on headEMD-11322Electron Microscopy Data Bank (EMDB)2.12; 3.6Ban, Nenadwww.ebi.ac.uk/pdbe/entry/emdb/EMD-11322
SARS-CoV-2-Nsp1-40S complex, focused on head6ZOLProtein Data Bank2.12; 3.6Ban, Nenadwww.wwpdb.org/pdb
SARS-CoV-2-Nsp1 bound to 43S Pre-initiation complexEMD-11323Electron Microscopy Data Bank (EMDB)2.12; 3.6Ban, Nenadwww.ebi.ac.uk/pdbe/entry/emdb/EMD-11323
SARS-CoV-2-Nsp1 bound to a translationally inactive 80S ribosomeEMD-11609Electron Microscopy Data Bank (EMDB)2.12; 3.6Ban, Nenadwww.ebi.ac.uk/pdbe/entry/emdb/EMD-11609
Karousis ED, Gurzeler LA, Annibaldis G, Dreos R, Mühlemann O. Human NMD ensues independently of stable ribosome stalling. Nat Commun, 11:4134 (2020)Ribosome profiling under ABCE1 depletion to study aberrant translation terminationGSE143301NCBI Gene Expression Omnibus2.12; 3.6; Bioinf LSMühlemann, Oliverwww.ncbi.nlm.nih.gov/geo/query/acc.cgi
Annibaldis G, Domanski M, Dreos R, Contu L, Carl S, Kläy N, Mühlemann O. Readthrough of stop codons under limiting ABCE1concentration involves frameshifting and inhibits nonsense-mediated mRNA decay. Nucleic Acids Res 48:10259-10279 (2020)Ribosome profiling under ABCE1 depletion to study aberrant translation terminationGSE143301NCBI Gene Expression Omnibus2.14; Bioinf BS & LS; 3.6Mühlemann, Oliverwww.ncbi.nlm.nih.gov/geo/query/acc.cgi
Ross NT, Lohmann F, Carbonneau S, Fazal A, Weihofen WA, Gleim S, Salcius M, Sigoillot F, Henault M, Carl SH, Rodriguez-Molina JB, Miller HR, Brittain SM, Murphy J, Zambrowski M, Boynton G, Wang Y, Chen A, Molind GJ, Wilbertz JH, Artus-Revel CG, Jia M, Akinjiyan FA, Turner J, Knehr J, Carbone W, Schuierer S, Reece-Hoyes JS, Xie K, Saran C, Williams ET, Roma G, Spencer M, Jenkins J, George EL, Thomas JR, Michaud G, Schirle M, Tallarico J, Passmore LA, Chao JA, Beckwith, REJ. CPSF3-dependent pre-mRNA processing as a synthetic lethal node in translocation driven AML and Ewing’s sarcoma. Nat Chem Biol, 16:50-59 (2020)PolyA-enriched RNA-seq of whole cell versus cytoplasmic fraction to assess read-through phenotype in compound-treated cellsSRP158650 NCBI Sequence Read Archive2.16Chao, Jeffreywww.ncbi.nlm.nih.gov/sra/
Cleavage and Polyadenylation Specificity Factor Subunit 3 (CPSF3) in complex with NVP-LTM5316M8QProtein Data Bank2.16Michaud, G.www.rcsb.org/structure/6M8Q
Pabis M, Termathe M, Ravichandran KE, Kienast SD, Krutyho?owa R, Soko?owski M, Jankowska U, Grudnik P, Leidel SA, Glatt S. Molecular basis for the bifunctional Uba4-Urm1 sulfur relay system in tRNA thiolation and ubiquitin-like conjugation. EMBO J, 39:e105087 (2020)Crystal structure of Uba4 from Chaetomium thermophilum6YUBProtein Data BankXXXGlatt, S.www.rcsb.org/structure/6YUB
Crystal structure of Uba4-Urm1 from Chaetomium thermophilum6YUCProtein Data BankXXXGlatt, S.www.rcsb.org/structure/6YUC
Crystal structure of Uba4-Urm1 from Chaetomium thermophilum6Z6SProtein Data BankXXXGlatt, S.www.rcsb.org/structure/6Z6S
Molecular characterization of the eukaryotic Uba4/Urm1 systemPXD015802ProteomXchange data repositoryXXXJankowska, Urszulawww.rcsb.org/structure/6Z6S
Boontanrart MY, Schröder MS, Stehli GM, Banovi? M, Wyman SK, Lew RJ, Bordi M, Gowen BG, DeWitt MA, Corn JE. ATF4 Regulates MYB to Increase ?-Globin in Response to Loss of ?-Globin. Cell Rep, 32:107993 (2020)ATF4 regulates MYB to increase g-globin in response to loss of ?-globinGSE153768NCBI Gene Expression OmnibusXXXCorn, Jacobwww.ncbi.nlm.nih.gov/geo/query/acc.cgi
Boneberg FM, Brandmann T, Kobel L, van den Heuvel J, Bargsten K, Bammert L, Kutay U, Jinek M. Molecular mechanism of the RNA helicase DHX37 and its activation by UTP14A in ribosome biogenesis. RNA, 25:685-701 (2019)Crystal structure of murine DHX37 in complex with RNA6O16Protein Data Bank3.1; 3.2Jinek, Martinwww.rcsb.org/structure/6O16
Ameismeier M, Zemp I, van den Heuvel J, Thoms M, Berninghausen O, Kutay U, Beckmann R. Structural basis for the final steps of human 40S ribosome maturation. Nature, 587:683-687 (2020)Cryo-EM structure of a late human pre-40S ribosomal subunit - State F1EMD-11517Electron Microscopy Data Bank (EMDB)3.1Beckmann, Rwww.ebi.ac.uk/pdbe/entry/emdb/EMD-11517
Cryo-EM structure of a late human pre-40S ribosomal subunit - State F2EMD-11518Electron Microscopy Data Bank (EMDB)3.1Beckmann, Rwww.ebi.ac.uk/pdbe/entry/emdb/EMD-11518
Cryo-EM structure of a late human pre-40S ribosomal subunit - State GEMD-11519Electron Microscopy Data Bank (EMDB)3.1Beckmann, Rhttps://www.ebi.ac.uk/pdbe/entry/emdb/EMD-11519
Cryo-EM structure of a late human pre-40S ribosomal subunit - State H1EMD-11520Electron Microscopy Data Bank (EMDB)3.1Beckmann, Rhttps://www.ebi.ac.uk/pdbe/entry/emdb/EMD-11520
Cryo-EM structure of a late human pre-40S ribosomal subunit - State H2EMD-11521Electron Microscopy Data Bank (EMDB)3.1Beckmann, Rwww.ebi.ac.uk/pdbe/entry/emdb/EMD-11521
Cryo-EM structure of a late human pre-40S ribosomal subunit - State F16ZXDProtein Data Bank3.1Beckmann, Rwww.rcsb.org/structure/6ZXD
Cryo-EM structure of a late human pre-40S ribosomal subunit - State F26ZXEProtein Data Bank3.1Beckmann, Rwww.rcsb.org/structure/6zxe
Cryo-EM structure of a late human pre-40S ribosomal subunit - State G6ZXFProtein Data Bank3.1Beckmann, Rwww.rcsb.org/structure/6ZXF
Cryo-EM structure of a late human pre-40S ribosomal subunit - State H16ZXGProtein Data Bank3.1Beckmann, Rwww.rcsb.org/structure/6ZXG
Cryo-EM structure of a late human pre-40S ribosomal subunit - State H26ZXHProtein Data Bank3.1Beckmann, Rwww.rcsb.org/structure/6ZXG
Miyake Y, Keusch JJ, Decamps L, Ho-Xuan H, Iketani S, Gut H, Kutay U, Helenius A, Yamauchi Y. Influenza virus uses transportin 1 for vRNP debundling during cell entry. Nat Microbiol, 4:578-586 (2019)Crystal structure of influenza A virus M1 N-terminal domain (G18A mutation)6I3HProtein Data Bank3.1Yamauchi, Ywww.rcsb.org/structure/6I3H
Garcia-Doval C, Schwede F, Berk C, Rostøl JT, Niewoehner O, Tejero O, Hall J, Marraffini LA, Jinek M. Activation and self-inactivation mechanisms of the cyclic oligoadenylate-dependent CRISPR ribonuclease Csm6. Nat Commun, 11:1596 (2020)Enterococcus italicus Csm6 bound to cyclic hexa-2'-fluoro-hexa-dAMP6TUGProtein Data Bank3.2Jinek, Martinwww.wwpdb.org/pdb
Pinto PH, Kroupova A, Schleiffer A, Mechtler K, Jinek M, Weitzer S, Martinez J. ANGEL2 is a member of the CCR4 family of deadenylases with 2’,3’-cyclic phosphatase activity. Science, 369:524–530 (2020)Crystal structure of ANGEL2, a 2',3'-cyclic phosphatase6RW0Protein Data Bank3.2Jinek, Martinwww.rcsb.org/structure/6rw0
Crystal structure of ANGEL2, a 2',3'-cyclic phosphatase, in complex with adenosine-2',3'-vanadate6RVZProtein Data Bank3.2Jinek, Martinwww.rcsb.org/structure/6RVZ
Panasenko OO, Somasekharan SP, Villanyi Z, Zagatti M, Bezrukov F, Rashpa R, Cornut J, Iqbal J, Longis M, Carl SH, Peña C, Panse VG, Collart MA. C-translation assembly of proteasome subunits in NOT1-containing assemblysomes. Nat Struct Mol Biol, 2:110-120 (2019)Yeast WT ribosome profiling sequences (Panasenko's project) - BioProjectPRJNA512900NCBI Sequence Read Archive3.3?? Panse, Vikram?www.ncbi.nlm.nih.gov/sra/PRJNA512900
van de Waterbeemd M, Tamara S, Fort KL, Damoc E, Franc V, Bieri P, Itten M, Makarov A, Ban N, Heck AJR. Dissecting ribosomal particles throughout the kingdoms of life using advanced hybrid mass spectrometry methods. Nat Commun, 9:2493 (2018)Bottom-up and top-down LC-MS/MS of ribosomal purificationsPXD008881ProteomXchange data repository3.4Sem, Tamaraproteomecentral.proteomexchange.org/cgi/GetDataset
Scaiola A, Peña C, Weisser M, Böhringer D, Leibundgut M, Klingauf-Nerurkar P, Gerhardy S, Panse VG, Ban N. Structure of a eukaryotic cytoplasmic pre-40S ribosomal subunit. EMBO J , 37:e98499 (2018)Structure of a eukaryotic cytoplasmic pre-40S ribosomal subunit6FAIProtein Data Bank3.4Ban, Nenadwww.rcsb.org/structure/6FAI
Xtructure of a eukaryotic cytoplasmic pre-40S ribosomal subunitEMD?4214Electron Microscopy Data Bank (EMDB)3.4Ban, Nenadwww.emdataresource.org/EMD-4214
Structure of a eukaryotic cytoplasmic pre-40S ribosomal subunit classified for Rio2EMD?4216Electron Microscopy Data Bank (EMDB)3.4Ban, Nenadwww.emdataresource.org/EMD-4216
Structure of a eukaryotic cytoplasmic pre-40S ribosomal subunit classified for Enp1EMD?4217Electron Microscopy Data Bank (EMDB)3.4Ban, Nenadwww.emdataresource.org/EMD-4217
Structure of a eukaryotic cytoplasmic pre-40S ribosomal subunit classified for Dim1EMD?4218Electron Microscopy Data Bank (EMDB)3.4Ban, Nenadhttps://www.emdataresource.org/EMD-4218
Yeast 80S ribosome with an uncleaved 20S rRNAEMD?4215Electron Microscopy Data Bank (EMDB)3.4Ban, Nenadhttps://www.emdataresource.org/EMD-4215
Kobayashi K, Jomaa A, Lee JH, Chandrasekar S, Boehringer D, Shan SO, Ban N. Structure of a prehandover mammalian ribosomal SRP·SRP receptor targeting complex. Science, 360:323-327 (2018)Structure of a prehandover mammalian ribosomal SRP and SRP receptor targeting complex6FRKProtein Data Bank3.4Ban, Nenadwww.rcsb.org/structure/6FRK
Structure of a prehandover mammalian ribosomal SRP and SRP receptor targeting complexEMD-4300Electron Microscopy Data Bank (EMDB)3.4Ban, Nenadwww.emdataresource.org/EMD-4300
Gruber AJ, Schmidt R, Ghosh S, Martin G, Gruber AR, van Nimwegen E, Zavolan M. Discovery of physiological and cancer-related regulators of 3' UTR processing with KAPAC. Genome Biol, 19:44 (2018)A-seq2 of HeLaSRP115462NCBI Sequence Read Archive3.7Zavolan, Mihaelawww.ncbi.nlm.nih.gov/sra/
Arpat AB, Liechti A, De Matos M, Dreos R, Janich P, Gatfield D. Transcriptome-wide sites of collided ribosomes reveal principles of translational pausing. Genome Res 30:985-99 (2020)Transcriptome-wide sites of collided ribosomes reveal sequence determinants of translational pausing in vivoGSE134541NCBI Gene Expression Omnibus3.8; Bioinf LSGatfield, Davidwww.ncbi.nlm.nih.gov/geo/query/acc.cgi
Castelo-Szekely V, De Matos M, Tusup M, Pascolo S, Ule J, Gatfield D. Charting DENR-dependent translation reinitiation uncovers predictive uORF features and links to circadian timekeeping via Clock. Nucl Acids Res, 47:5193-209 (2019)DENR-regulated reinitiation events uncover predictive uORF features and links to circadian timekeeping via Clock regulationGSE124793NCBI Gene Expression Omnibus3.8Gatfield, Davidwww.ncbi.nlm.nih.gov/geo/query/acc.cgi
Wang ZY, Leushkin E, Liechti A, Ovchinnikova S, Mossinger K, BrüningT, Rummel C, Grützner F, Cardoso-Moreira M, Janich P, Gatfield D, Diagouraga B, De Massy B, Gill ME, Peters AHFM, Anders S, Kaessmann H. Transcriptome and translatome co-evolution in mammals. Nature, 588:642-647 (2020)Using ribosome profiling and matched RNA sequencing to study the co-evolution of transcriptome and translatome in mammalian organsE-MTAB-7247Array Express3.8Kaessmann, Henrikhttps://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-7247/ 
Fricker R, Brogli R, Luidalepp H, Wyss L, Fasnacht M, Joss O, Zywicki M, Helm M, Schneider A, Cristodero M, Polacek N. A tRNA half modulates translation as stress response in Trypanosoma brucei. Nature Commun, 10:118 (2019)Profiling of ribosome-associated small RNAs in Trypanosoma bruceiPRJEB24915European Nucleotide Archive (ENA)3.9; 3.10Polacek, Norbertwww.ebi.ac.uk/ena/browser/view/PRJEB24915
Shankar V, Rauscher R, Reuther J, Gharib WH, Koch M, Polacek N. rRNA expansion segment 27Lb modulates the factor recruitment capacity of the yeast ribosome and shapes the proteome. Nucleic Acids Res, 48:3244-3256 (2020)mSeq of total and polysome bound mRNAs in two yeast strainsGSE134774NCBI Gene Expression Omnibus3.9Polacek, Norbertwww.ncbi.nlm.nih.gov/geo/query/acc.cgi
Jaskolowski M, Ramrath DJF, Bieri P, Niemann M, Mattei S, Calderaro S, Leibundgut M, Horn EK, Boehringer D, Schneider A, Ban N. Structural Insights into the Mechanism of Mitoribosomal Large Subunit Biogenesis. Mol Cell, 79:629-644.e4 (2020)State A of the Trypanosoma brucei mitoribosomal large subunit assembly intermediateEMD-10999Electron Microscopy Data Bank (EMDB)3.11Ban, Nenadwww.emdataresource.org/EMD-10999
State B of the Trypanosoma brucei mitoribosomal large subunit assembly intermediateEMD-11000Electron Microscopy Data Bank (EMDB)3.11Ban, Nenadwww.emdataresource.org/EMD-11000
State A of the Trypanosoma brucei mitoribosomal large subunit assembly intermediate6YXXProtein Data Bank3.11Ban, Nenadwww.rcsb.org/structure/6YXX
State B of the Trypanosoma brucei mitoribosomal large subunit assembly intermediate6YXYProtein Data Bank3.11Ban, Nenadwww.rcsb.org/structure/6YXY
Saurer M, Ramrath D, Niemann M, Calderaro S, Prange C, Mattei S, Scaiola A, Leitner A, Bieri P, Horn EK, Leibundgut M, Boehringer D, Schneider A, Ban N. Mitoribosomal small subunit biogenesis in trypanosomes involves an extensive assembly machinery. Science, 365:1144-1149 (2019)Head domain of the mt-SSU assemblosome from Trypanosoma brucei6SG9Protein Data Bank3.11Ban, Nenadwww.rcsb.org/structure/6SG9
Body domain of the mt-SSU assemblosome from Trypanosoma brucei6SGAProtein Data Bank3.11Ban, Nenadwww.rcsb.org/structure/6SGA
mt-SSU assemblosome of Trypanosoma brucei6SGBProtein Data Bank3.11Ban, Nenadwww.rcsb.org/structure/6SGB
Head domain of the mt-SSU assemblosome from Trypanosoma bruceiEMD-10175Electron Microscopy Data Bank (EMDB)3.11Ban, Nenadwww.emdataresource.org/EMD-10175
Body domain of the mt-SSU assemblosome from Trypanosoma bruceiEMD-10177Electron Microscopy Data Bank (EMDB)3.11Ban, Nenadwww.emdataresource.org/EMD-10177
mt-SSU assemblosome of Trypanosoma bruceiEMD-10180Electron Microscopy Data Bank (EMDB)3.11Ban, Nenadwww.emdataresource.org/EMD-10180
mt-SSU assemblosome of wild-type Trypanosoma brucei bruceiEMD-10176 Electron Microscopy Data Bank (EMDB)3.11Ban, Nenadwww.emdataresource.org/EMD-10176
mt-SSU middle assembly intermediate of wild-type Trypanosoma brucei bruceiEMD-10178Electron Microscopy Data Bank (EMDB)3.11Ban, Nenadwww.emdataresource.org/EMD-10178
mt-SSU late assembly intermediate of wild-type Trypanosoma brucei bruceiEMD-10179Electron Microscopy Data Bank (EMDB)3.11Ban, Nenadwww.emdataresource.org/EMD-10179
Ramrath DJF, Niemann M, Leibundgut M, Bieri P, Prange C, Horn EK, Leitner A, Boehringer D, Schneider A, Ban N. Evolutionary shift toward protein-based architecture in trypanosomal mitochondrial ribosomes. Science, 362:eaau7735 (2018)Cryo-EM structure of the Trypanosoma brucei mitochondrial ribosome - This entry contains the complete mitoribosomeEMD-0229Electron Microscopy Data Bank (EMDB)3.11Ban, Nenadwww.emdataresource.org/EMD-0229
Cryo-EM structure of the Trypanosoma brucei mitochondrial ribosome - This entry contains the complete mitoribosome6HIVProtein Data Bank3.11Ban, Nenadwww.rcsb.org/structure/6HIV
Cryo-EM structure of the Trypanosoma brucei mitochondrial ribosome - This entry contains the complete small mitoribosomal subunit in complex with mt-IF-3EMD-0230Electron Microscopy Data Bank (EMDB)3.11Ban, Nenadwww.emdataresource.org/EMD-0230
Cryo-EM structure of the Trypanosoma brucei mitochondrial ribosome - This entry contains the complete small mitoribosomal subunit in complex with mt-IF-36HIWProtein Data Bank3.11Ban, Nenadwww.rcsb.org/structure/6HIW
Cryo-EM structure of the Trypanosoma brucei mitochondrial ribosome - This entry contains the large mitoribosomal subunitEMD-0231Electron Microscopy Data Bank (EMDB)3.11Ban, Nenadwww.emdataresource.org/EMD-0231
Cryo-EM structure of the Trypanosoma brucei mitochondrial ribosome - This entry contains the large mitoribosomal subunit6HIXProtein Data Bank3.11Ban, Nenadwww.rcsb.org/structure/6HIX
Cryo-EM structure of the Trypanosoma brucei mitochondrial ribosome - This entry contains the body of the small mitoribosomal subunit in complex with mt-IF-3EMD-0232Electron Microscopy Data Bank (EMDB)3.11Ban, Nenadwww.emdataresource.org/EMD-0232
Cryo-EM structure of the Trypanosoma brucei mitochondrial ribosome - This entry contains the body of the small mitoribosomal subunit in complex with mt-IF-36HIYProtein Data Bank3.11Ban, Nenadwww.rcsb.org/structure/6HIY
Cryo-EM structure of the Trypanosoma brucei mitochondrial ribosome - This entry contains the head of the small mitoribosomal subunitEMD-0233Electron Microscopy Data Bank (EMDB)3.11Ban, Nenadwww.emdataresource.org/EMD-0233
Cryo-EM structure of the Trypanosoma brucei mitochond6HIZProtein Data Bank3.11Ban, Nenadwww.rcsb.org/structure/6HIZ
Kummer E, Ban N. Structural insights into mammalian mitochondrial translation elongation catalyzed by mtEFG1. EMBO J, 39:e104820 (2020)55S mammalian mitochondrial ribosome with mtEFG1 and two tRNAMet (TI-POST)EMD-10779Electron Microscopy Data Bank (EMDB)3.11Ban, Nenadwww.ebi.ac.uk/pdbe/entry/emdb/EMD-10779
55S mammalian mitochondrial ribosome with mtEFG1 and P site fMet-tRNAMet (POST)EMD-10778Electron Microscopy Data Bank (EMDB)3.11Ban, Nenadwww.ebi.ac.uk/pdbe/entry/emdb/EMD-10778
55S mammalian mitochondrial ribosome with mtEFG1 and two tRNAMet (TI-POST)6YDWProtein Data Bank3.11Ban, Nenadwww.rcsb.org/structure/6YDW
55S mammalian mitochondrial ribosome with mtEFG1 and P site fMet-tRNAMet (POST)6YDPProtein Data Bank3.11Ban, Nenadwww.rcsb.org/structure/6YDP
Kummer E, Leibundgut M, Rackham O, Lee RG, Boehringer D, Filipovska A, Ban N. Unique features of mammalian mitochondrial translation initiation revealed by cryo-EM. Nature, 560:263-267 (2018) Unique features of mammalian mitochondrial translation initiation revealed by cryo-EM. This file contains the 28S ribosomal subunit6GAZProtein Data Bank3.11Ban, Nenadwww.rcsb.org/structure/6GAZ
Unique features of mammalian mitochondrial translation initiation revealed by cryo-EM. This file contains the 28S ribosomal subunit.EMD-4369Electron Microscopy Data Bank (EMDB)3.11Ban, Nenadwww.ebi.ac.uk/pdbe/entry/emdb/EMD-4369/
Unique features of mammalian mitochondrial translation initiation revealed by cryo-EM. This file contains the 39S ribosomal subunit6GB2Protein Data Bank3.11Ban, Nenadwww.rcsb.org/structure/6GB2
Unique features of mammalian mitochondrial translation initiation revealed by cryo-EM. This file contains the 39S ribosomal subunit.EMD-4370Electron Microscopy Data Bank (EMDB)3.11Ban, Nenadwww.ebi.ac.uk/pdbe/entry/emdb/EMD-4370
Unique features of mammalian mitochondrial translation initiation revealed by cryo-EM. This file contains the complete 55S ribosome6GAWProtein Data Bank3.11Ban, Nenadwww.rcsb.org/structure/6GAW
Unique features of mammalian mitochondrial translation initiation revealed by cryo-EM. This file contains the complete 55S ribosome.EMD-4368Electron Microscopy Data Bank (EMDB)3.11Ban, Nenadwww.ebi.ac.uk/pdbe/entry/emdb/EMD-4368
Wang S, Jomaa A, Jaskolowski M, Yan CI, Ban N, Shan SO. The molecular mechanism of cotranslational membrane protein recognition and targeting by SecA. Nat Struct Mol Biol, 26:919-929 (2019)Ribosome nascent chain in complex with SecAEMD-10073 Electron Microscopy Data Bank (EMDB)3.11Ban, Nenadwww.ebi.ac.uk/pdbe/entry/emdb/EMD-10073
SecA in complex with ribosome nascent chainEMD-10074Electron Microscopy Data Bank (EMDB)3.11Ban, Nenadwww.ebi.ac.uk/pdbe/entry/emdb/EMD-10074
Ribosome nascent chain in complex with SecA6S0KProtein Data Bank3.11Ban, Nenadwww.rcsb.org/structure/6S0K
Gamerdinger M, Kobayashi K, Wallisch A, Kreft SG, Sailer C, Schlömer R, Sachs N, Jomaa A, Stengel F, Ban N, Deuerling E. Early Scanning of Nascent Polypeptides inside the Ribosomal Tunnel by NAC. Mol Cell, 75:996-1006.e8 (2019)C.elegans NAC-ribosomal 60S complexEMD-4938Electron Microscopy Data Bank (EMDB)3.11Ban, Nenadwww.ebi.ac.uk/pdbe/entry/emdb/EMD-4938
Early Scanning of Nascent Polypeptides inside the Ribosomal Tunnel by NACPXD011995ProteomXchange data repository3.11Stengel, Florianproteomecentral.proteomexchange.org/cgi/GetDataset